This blog post details the development and deployment of a customizable AI Agent using watsonx.ai. It covers motivations, architecture, and code for a weather query tool, explaining local execution, testing with pytest, and deployment via scripts. The integration with Streamlit UI is emphasized, showcasing seamless deployment processes and enhanced functionality for developers.
Deploying an InstructLab Fine-Tuned Model on IBM watsonx Inference: A SaaS Guide
This blog post explains how to deploy a fine-tuned model to IBM watsonx on IBM Cloud. It highlights the advantages of using this platform, such as avoiding infrastructure management and ensuring enterprise security, as well as detailed steps for configuration, deployment, and accessing the model from IBM watsonx.
InstructLab Fine-Tuning Guide: Updates and Insights for the Musician Example
The blog post outlines updates on fine-tuning a model with the InstructLab , detailing tasks like data preparation, validation, synthetic data generation, model training, and testing. It emphasizes the need for extensive and accurate input for effective training, while only minimal changes in the overall process since previous versions, particularly in handling data quality. This blog post contains updates related to my blog post InstructLab and Taxonomy tree: LLM Foundation Model Fine-tuning Guide | Musician Example.
How to Install and Configure InstructLab in January 2025 – are there any changes?
This blog post provides updates on the InstructLab project by IBM and Red Hat, detailing installation and configuration changes. It discusses new default locations for files and troubleshooting steps for model serving, emphasizing an overall installation process that remains largely consistent with prior guidance while noting minor user-friendly adjustments.
