Implementing LangChain AI Agent with WatsonxLLM for a Weather Queries application

This blog post describes the customization of the LangChain AI Agent example from IBM Developer using Watsonx in Python. It demonstrates the implementation of a weather query application with detailed steps. The post offers insight into model parameters, creating prompts, agent chains, tool definitions, and execution. Additionally, it provides links to additional resources for further exploration.

How to define a custom Open API specification for a Watson Machine Learning deployment to integrate it into watsonx Assistant

This blog post is about how to define a custom Open API specification` for Watson Machine Learning - IBM Cloud deployment to integrate it into watsonx Assistant. The Watson Machine Learning deployments make it easy for data scientists to write AI Prototypes to be integrated into applications because they can use Jupyter Notebooks and Python they are used to without knowing how to write containers and set up runtimes; they can deploy, and the developers can consume the AI functionalities they have implemented via a REST API.

Blog at WordPress.com.

Up ↑